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An Analysis of Long Baseline Radio Interferometry, Part Il

J. B. Thomas

Tracking and Orbit Determination Section

This report continues the analysis of the cross-correlation procedure used in long
baseline radio interferometry begun in Technical Report 32-1526, Vol. VII, pp. 37—
50. It is assumed that the radio signal is generated by a very distant, completely
incoherent, extended source. For both digital and analog recording systems, the
normalized cross-correlation function is derived in terms of noise temperature,
fringe visibility, and bandpass overlap. For very strong point sources and accurate
model delays, it is shown that the digital cross-correlation function becomes a
sawtooth time function whose extrema and zero crossings agree with the sinusoidal
cross-correlation function produced by an analog system. For weak sources, such
as those common to most very long baseline interferometry measurements, the digi-
tal cross-correlation function is identical to the normalized analog cross-correlation
function, except for a loss of 2/= in amplitude.

General signal/noise (S/N) expressions are derived for both the digital and the
analog cross-correlation functions. For a very strong point source, the S/N ratio in
a digital system can be infinitely better than the S/N ratio in an analog system at
time points of maximum correlation. However, at points of weak correlation, the
digital S/N ratio is 2/= smaller than the analog value. In the case of small corre-
lated amplitude, the digital system produces a S/N ratio that is uniformly 2/=

worse than the analog system ratio.

I. Introduction

In very long baseline interferometer (VLBI) measure-
ments, the radio signal produced by a distant source is
recorded simultaneously at two widely separated an-
tennas. These recorded signals are then cross-correlated
to determine correlated amplitude, as well as delay and
delay rate due to path differences. An earlier report
(Ref. 1) presented an analysis of long baseline interferom-
etry that included the following topics—time delay theory,
source statistics, electronic factors, and a derivation of the
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analog cross-correlation functions for point sources and
completely incoherent, extended sources. In this report,
the analog cross-correlation function is simplified by nor-
malization and expressed in terms of noise temperature,
fringe visibility, and bandpass overlap. In addition, this
report considers digital recording and signal-to-noise
ratios for the following reasons.

In the digital recording systems found in many VLBI
systems, the voltage signal is infinitely clipped before it is
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recorded. That is, each time the signal is sampled, only the
sign of the voltage is recorded. Since this clipping process
only preserves the zero crossings of the original analog
signals, the digital cross-correlation function will devi-
ate from the analog cross-correlation function derived in
earlier work (Ref. 1). In order to assess the importance
of this deviation, the digital cross-correlation procedure
is investigated in the case of a completely incoherent, ex-
tended source. The statistical approach used in this analy-
sis is based on a technique employed by Van Vleck and
Middleton (Ref. 2) to investigate the autocorrelation of
clipped Gaussian noise. Their technique is applied to the
cross-correlation of infinitely clipped VLBI signals in
order to obtain the digital cross-correlation function.

A signal/noise (S/N) analysis has been performed for
two reasons. First, source brightness measurements are
often based on the S/N values observed in VLBI experi-
ments. In the case of infinite clipping, brightness measure-
ments must depend to some extent on S/N expressions
since all absolute amplitude information is lost in the
clipping process. Second, estimates of the measurement
precision for time delay and delay rate can be calculated
on the basis of the S/N ratios for the cross-correlation
function. For these reasons S/N expressions have been
derived for both the analog and digital cross-correlation
functions.

Il. Normalized Cross-Correlation Function

In this section, the analog cross-correlation function
for an extended source is simplified by a normalization
process that introduces noise temperature and fringe visi-
bility. We first derive expressions for the mean-square
noise and signal voltages. These expressions are then used
to normalize the cross-correlation function in terms of
noise temperatures.

As indicated in previous work (Ref. 1), the voltage due
to an extended source recorded at antenna § may be repre-
sented as the sum of a signal term and a noise term as
follows:

V; (t) = /i;‘ /‘;wcj (y]> k; A (ﬁ, u)) et dy dQ + c.c.

+ / "G () Hy (o) €1 do + cuc. (1)
where
¥i = o(l—k-x;/c)
@ = (0= w;)t — ok %;/c — orj + ¢;

;= (0= 0;)t —or; + ¢;
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The quantity A (i;, w) is the Fourier amplitude of the wave
received from direction k at frequency . Note that the
signal term consists of a superposition of waves received
from all parts of the source (k integral) over all allowed
frequencies (v integral). The quantity do represents a
differential solid angle centered at k. The function G; is
the effective bandpass filter with an argument y; that
accounts for doppler shifting. The quantity ; is the effec-
tive mixing frequency, ¢; is the instrumental phase shift,
and 7 is the instrumental delay. The vector x; is the posi-
tion of station , and c¢ is the speed of light. We have
assumed the antenna pattern is large compared to the
source size and may therefore be neglected. More discus-
sion of Eq. (1) is given in Ref. 1. This expression differs
from the reference in two ways. First, the noise term has
been represented in terms of its frequency components
H;{w). In this representation, it has been assumed, with-
out loss of generality, that all instrumental noise is effec-
tively added at the first stage of amplification. This noise
term will also include all background radio noise. Sec-
ond, a factor «; has been included in order to separately
account for antenna factors such as aperture and efficiency
in the conversion from electrical field to voltage.

In order to calculate the mean-square voltages, we must
know the average values of random products such as
A(k,0) A* (K, o’). If we assume that the source is com-
pletely incoherent, an ensemble average of the signal com-
ponents is given by the expressions (Ref. 1)

Sp(k,0) 8 (0 — o) 8 (k— %)

(2)
=0 forvand o’ >0

(A (ko) A* (R, "))
Ak o) AR, o)

where S, (ic\, ) is the spectral power from direction k and
8 (z) is the Dirac delta function. That is, radio waves
emitted by different areas of the source are uncorrelated.
Furthermore, noise waves emitted by a given area of the
source are stationary and therefore possess uncorrelated
frequency components (Ref. 1). We will also assume that
the system noise is stationary, so that

(Hj (0) H; (")) = N;j (0) 8 (0 — o)
(Hj(0)H; (o)) =0

3
for o’ and v > 0

where N (o) is the power spectrum of the system noise at
station §.

Under these assumptions, it is readily shown that an

ensemble average of the square of the voltage is given
by the expression

(V3) = (V&) + (V) (4)
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where

(VE) =2 / / |Gi(yi)|*«3 S

and

(k, ») do do )

Viy=2 / " |G (@) | N; (o) d ©)

In analogy with the derivation of the cross-correlation
function in Ref. 1, the cross terms between uncorrelated
components have disappeared. As one would expect, the
average signal power is given by the power received in
the passband (o integral) from all parts of the source
(k integral).

We may define the total spectral power of the source
as the integral

&w=£%&@m )

so that the mean-square signal becomes

Vi) =2 f "1G5 )]3S, () ds (®)

We have neglected the insignificant doppler shift varia-
tions (<0.01 Hz) in y; across the source and have chosen
the source center to evaluate the doppler term k- *x; in the
argument of the bandpass filter.

If both stations possess a square effective bandpass of
width W and height |G;|, and if the power spectra of the
signal S, and noise N; are flat in the region of the band-
pass, we obtain ‘

<V§]) = 4x IG]- I 2 K? S,,W (9)

<va,1> = 4x |Gjl2NjW (10)

The analog cross-correlation function for a completely

incoherent, extended source is given by the expression
(Ref. 1)

Vi@) Vot + )y = exp {i [(0: — 01) t + 027 + ¢]}

X /mR(u, v, 0) Gy (§1) G (¥.) exp (iwA7) do + c.c.
(11)
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In addition, the brightness transform is defined by the
expression

R (1,0, 0) = / - / " S (B, y, ) exp (2ri [ (8 — o)

+0(y — vJ)]} dBdy (12)
where
ok
U= 3—,§ ] ‘B,/A
ok
055; u'B,//\
A= 27rC/u)

The brightness transform determines the self-interference
of the extended source by summing the point-source inter-
ferometer response over the total area of the source, using
the source center as a zero-phase reference. The variables
B and y are two direction parameters chosen to describe
the direction vector k. (In VLBI work, y is usually declina-
tion 8, while B is right ascension multiplied times the
cosine of the declination of the source center or « cos 8,.)
The subscript @ on y, 8, and k refers to the source center
where k, =k (Ya» Ba). The quantity 7, is the geometric
delay, . is the instrumental delay, and 7,, is the model
delay. In these expressions, the following factors are eval-
uated at the center of the source k.—the geometric time
delay +,; the k partials in u, v; and the doppler shifts in ¥;.
The vector B, is the retarded baseline, and X is the RF
wavelength. (For more detail concerning definitions and
the derivation of this result, see Ref. 1.)

Note that the brightness transform for a “zero-length”

baseline gives
/ / SD (B > Y ®

=S,( (13)

R(0,0,0
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where S, is the total spectral power of the source. The
fringe visibility, which is defined by the expression

_ |R(u,0,0)|

R (u,v,0)
7o (1, 0,0) = R(0,0,) =] |

Szz (“’)

measures the “correlated flux” in terms of the total flux.
That is, the fringe visibility is the fractional amplitude
that remains after self-interference. Note that y, equals
one for a point source.

(14)

For unsymmetrical brightness distributions Sj, (8, y, »),
one must be careful when assigning an effective source
center. For example, consider a source that consists of a
broad diffuse disk-shaped background with a point-source
at one edge. For a short baseline with weak resolution,
the effective center will be approximately equal to the
centroid of the total brightness distribution. For long base-
lines that totally resolve the diffuse component, the effec-
tive source center becomes the point-source location. In
present VLBI measurements, this effect is generally not
observed since instrumental and transmission media un-
certainties in time delay measurements lead to source
location errors that are several times greater than the
interferometer resolution. For example, typical source
location errors are of the order of 0.01 arc sec, while reso-
lution is of the order of 0.001 arc sec for intercontinental
baselines.

In general, both the magnitude and phase of the bright-
ness transform depend on u, v, and o. In the following
work, we will assume that all parts of the source emit a
flat power spectrum in the region of the passband. This
means that the explicit frequency variation in R (u, v, »)
may be neglected in the o integration in Eq. (11) if we
make the explicit frequency » equal to the bandpass cen-
ter. In addition to this explicit frequency dependence, the
variables u and v depend implicitly on . In the following
derivation, we will assume this implicit frequency depen-
dence is negligible over the passband for both the ampli-
tude and phase of the brightness transform. That is, we
will assume that R may be removed from the integral if
we evaluate o, u, and v at o,, the bandpass center fre-
quency. The approximation is justified by the fact that the
frequency typically changes about one part in 10° or 104
in integrating over the bandpass. For most brightness dis-
tributions, this approximation is very accurate. For ex-
ample, in the case of diffuse, yet compact distributions,
it can be shown that the fractional amplitude change will
be of the order of 10-* and the phase change of the order
of 0.0001 cycle if the fractional frequency change is 10-3.
Both of these changes may presently be neglected in the
o integral.
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If we express the brightness transform in terms of its
real and imaginary parts,

R(u,v,0) = |R (4,0, 0)| exp [i¢r (4,0, 0)] (15)
the cross-correlation function becomes

V() Vo (t + ) = exp {i [(wg—ml)t+a>27m+¢+¢g]}

5 | R (o, 50, 0)| / "Gy (7) G () exp (iwar) do (16)

where we have evaluated R and ¢, at the bandpass center
and removed them from the integral. If we now assume
that both stations possess a square bandpass filter of
height |G;| and width W, we can perform the frequency
integration in Eq. (16) to obtain (Ref. 1)

Vi) Vo (t + 7)) =

sin #WpAr

47 k1 k2 |G| |Gz | 0 Sy W WoAr

COS ¢/ (17)
where
dr=1(0s — 01)t + 0z 7w + 0o Ar + ¢ + ¢p

In this expression, W, is the bandpass overlap after
doppler shifting. The bandpass center o, is the centroid
of the bandpass product. In addition, |R|, the magnitude
of the brightness transform, has been replaced by the
fringe visibility v, and the total power spectrum §,, as indi-
cated in Eq. (14). Both y, and S, are evaluated at the
bandpass center (wo, U, Vo).

The normalized cross-correlation function will be de-
fined by the expression

Vi) Vo (t + 7))

V(VH(VE

With this definition and Egs. (9), (10), and (17), the nor-
malized cross-correlation function becomes

V& y(VE) W, sin #WpA
) = 10\ R i T cosgy (19

The last expression may be simplified by the concept of
noise temperature. The system temperature (Ref. 3) for
antenna § will satisfy the relation

T (t, Tm) = (18)

T, = 2 vy (20)
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while the signal temperature will be given by
Ts, = 22.(V3) (21)

The quantity p; is a proportionality constant whose mag-
nitude will depend on the amplifier gains at station j. The
actual value for p; will not be of importance, since we are
only interested in ratios of noise power and signal power.
With the aid of Egs. (20) and (21), the normalized cross-
correlation function becomes

TS1TS2 WD sin WWDAT
V"N T,T, W «Wpar

(b, rm) = cosg,  (22)

where

¢/=(m2—m1)t+wzrm+woAT+¢+¢R

Thus, the normalized interferometer response to an
extended source consists of the following factors. The
geometric mean of the noise temperature ratios accounts
for signal-to-noise factors. The bandpass overlap factor,
W5/W, accounts for power lost due to imperfect passband
alignment. As discussed in Ref. 1, the (sin x)/x delay func-
tion indicates the accuracy with which the two signals
have been aligned and peaks for zero delay error (Ar = 0).
The fast fringes, cos ¢;, express the average overall phase
behavior of the cross-correlated signals. The fringe visi-
bility v, accounts for power lost due to self-interference of
the extended sources.

Techniques for measuring system temperature are rou-
tinely employed at DSN stations. Note that the system
temperatures, T; and T, in Eq. (20) are a sum of the
instrumental noise temperature, the background radio
noise temperature, and the total radio signal T,,. DSN
instrumental noise temperatures are typically between 18
and 40°K and are due mainly to receiver noise. Back-
ground radio noise depends on sky temperature and
elevation angle, but generally is less than 30°K for DSN
antennas. Recent experimental results indicate that ap-
proximate values for signal temperature may be calcu-
lated by means of the expression

T,, = 0.0002 SA, (23)

where T, is the signal temperature in °K, S is the total
source strength in flux units,* and A; is the area of antenna
i in meters. However, exact values for signal temperature
may deviate from this expression because of differences

1] flux unit = 10-26 W/m?Hz.
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in antenna and receiver efficiencies. The signal tempera-
ture for a 1-flux-unit source at DSS 14 (64-m-antenna) is
approximately 0.65°K at S-band.

lil. Digital Cross-Correlation Function

In this section, an expression is derived for the cross-
correlation function produced by infinitely clipped sig-
nals. The derivation is an application of a technique
devised by Van Vleck and Middleton (Ref. 2) to analyze
the autocorrelation of clipped noise. This section shows
their derivation can be applied to the cross-correlation
problem found in VLBI work.

Define the normalized voltage X (¢) for station 1 by the
relation

X@)= (24)

and the normalized voltage Y () for station 2 by the
relation

Y(t) =+ (25)

The normalized cross-correlation function for analog sig-
nals is then given by the expression

V) Vo[t + 7))
(Vi (V)

r (t, 'rm)

I

= (X@OY (¢ + ) (26)

As indicated in Eq. (1), the voltage at each station may
be represented as the sum of integrals of random noise
and signal components. Suppose that the components
A(k, ) and H; (o) are normally distributed. Since the
voltages are then a linear combination of normally dis-
tributed random variables, their joint probability distri-
bution (Ref. 2) will be given by the following normalized
bivariate Gaussian distribution:

(X® + Y? — 2rXY)
2(1—1r?)

P(X,Y)= QTI];‘W exp [— :| (27)

where, for conciseness, we have used the abbreviated
notation

X=X@), Y=Y+
and

r =1t mm) = (XY)
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Suppose that, for a particular recording system, the volt-
age signal is subjected to amplitude distortion so that the
recorded amplitude is f (X) instead of X. If this recording
system is deployed at both antennas, the cross-correlation
function will be given by the expression

R(t, ) = (FX)F(Y)) = / i / "FX) £(Y) P (X, Y) dXdY
(28)

In the case of extreme clipping, we have the distortion
function

X>0

F(X)=f.(X) = +1,
- X<0 (29)

= —1’

For this distortion, Eq. (28) may be integrated (Ref. 2) to
give the digital cross-correlation function r..

ot 7m) = f - / "1 (0 . (V) P (X, Y) dXdY

= % sin™ [r (t, 7m)] (30)

Thus, after defining the content, statistics, and normaliza-
tion of the voltage signals, the derivation of the digital
cross-correlation function duplicates the technique em-
ployed by Van Vleck and Middleton (Ref. 2). However,
in the present work, the correlation functions depend on
time in addition to the model delay. The appearance of a
time dependence is due to the fact that the VLBI proce-
dure is a cross-correlation process, rather than the auto-
correlation process in Ref. 2. Furthermore, the voltage
signals and the normalization process involve both the
radio signal and the additive noise. Note that this result,
Eq. (30), is quite general, since it only assumes that the
signals, X and Y, are sums of Gaussian random variables.
In particular, the result is valid for both extended sources
and point sources.

In particular cases, the digital cross-correlation func-
tion assumes a simpler form. First, suppose that the radio
signals are very weak (Ts; < < T;) or that the correlated
flux is very small (y, << 1). (In typical VLBI work, the
amplitude of the normalized cross-correlation function
falls in the range 0.1 to 0.001.) In either case, the nor-
malized cross-correlation function r is small compared to
one, so that Eqgs. (22) and (30) give

2
Te (t, Tm) ~ ; r (t, Tm)
_ 2 TS1TSZ % sin TI'WDAT
ZVNTLT, W aWea, oS¢ (31)
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Thus, in the case of small correlated amplitude, the nor-
malized digital cross-correlation function is identical to
the sinusoidal analog cross-correlation function, except for
a loss of 2/= in amplitude. Schematic examples of the
normalized analog and digital cross-correlation functions
are shown in Fig. la. In this and following examples, we
utilize the fact that the fringe frequency ¢, is almost con-
stant over small time intervals.

In the limit of a very strong point source, the system
temperature is equal to the signal temperature (T; = T)).
If, in addition, the bandpass alignment is perfect
(W, = W) and the model delay is very accurate (Ar < <
1/W), the analog cross-correlation function, Eq. (22), be-

comes

7(t, Tm) = sin A, (32)
where

)\pz—g'—(wg—ml)t—

02Tm — 0WAT — P — g
The normalized digital cross-correlation function for
strong signals then becomes

re(t ) = = sin™ [r (8, )]

=M (33)
where

X, = sin [sin A, ] (34)

In the expression for X, the sine inversion ambiguity is
uniquely resolved as follows. Since the digital cross-
correlation function r, must be less than one in magnitude,
A, must lie between —7/2 and + /2. Thus, given a value
for A,, only one value for X, is less than =/2 in magnitude
and satisfies the equation sin A, = sin'\,. A schematic plot
of the analog cross-correlation function for a very strong
point source is shown in Fig. 2a, while the corresponding
digital cross-correlation function is shown in Fig. 3a. Note
that the digital cross-correlation function consists of a saw-
tooth curve rather than the sinusoidal function associated
with analog recording. However, the extrema and zero
crossings of the digital system occur at the same time
points found with the analog system. For this reason, the
frequency characteristics of the digital cross-correlation
function are the same as those found in the analog case if
we neglect harmonics higher than the first.
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IV. Signal-to-Noise Analysis

In this section, expressions are derived for the S/N
ratios associated with the cross-correlation functions pro-
duced by both analog and digital recording systems. This
S/N analysis is valid for both point sources and extended
sources.

In the case of analog recording, the rms noise on the
cross-correlation function is given by the expression

o = (XY — r)2) = / / (XY — r)2 P (X, Y) dXdY

= ] / X2Y2P(X,Y)dXdY —»  (35)

where P (X,Y) is given by Eq. (27). The last integration
is assisted by the transformation

X=X

which gives

or=YV 1+ (37)

In the case of digital recording, the rms noise on the
cross-correlation function is given by

o7, = ([fe (X) fe (Y) — rc]?)
- / [fo (X) £ (Y) — rJ2P(X,Y)dXdY  (38)

which is easily integrated to give

Or, = v 1- TE' (39)

The S/N ratio for the analog case is therefore given by
the expression

S r r
— = e 40
N @ ar V1+ ( )

where r is the normalized analog cross-correlation func-
tion. For digital recording, the S/N ratio is given by

=l o T (41)

or V1i—172

C c
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where

r. = —sinlr
g

For small correlated amplitude, the S/N ratios assume
simple forms. In this limit, we have r << 1and r, < < 1,
so that

Or, = Or ~1 (42)

and

2
Te = : r (43)

The S/N ratios in Eqs. (40) and (41) become

ﬁ =r (t, Tm) (44)
for analog recording and

S 2

~N| =Cr (t, ™m) (45)

for digital recording. Thus, for small correlated amplitude,
one would uniformly lose a factor of 2/ in signal-to-noise
by using digital recording instead of analog recording.
This fact has been mentioned in various VLBI papers.
Schematic examples of the digital and analog cross-
correlation functions and their rms noise are shown in
Figs. 1a and 1b for the case of small correlated amplitude.

For the case of very strong point radio sources, plots of
the cross-correlation function and its rms noise are shown
in Fig. 2 for analog recording and in Fig. 3 for digital
recording. Note that, for analog recording, the maximum
S/N ratio is 1/V 2 due to self-noise. For digital recording,
the S/N ratio goes to infinity at time points of maximum
correlation. The zero noise at these points may be ex-
plained by considering the autocorrelation of infinitely
clipped noise. When the autocorrelation signals are per-
fectly aligned (r = 0), the product of the clipped voltages
is always +1[(+1)(+1) or (—1) (—1)] with no noise. At
points of weak correlation, the digital S/N is 2/ smaller
than the analog S/N.

V. Summary

The analog cross-correlation function is normalized and
expressed in terms of noise temperature, fringe visibility,
and bandpass overlap for rectangular filters.
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By defining the content, statistics, and normalization of
the VLBI signals, the Van Vleck derivation is used to
determine the digital cross-correlation function in terms
of the normalized analog cross-correlation function. For
very strong point sources, a digital recording system gen-
erates a sawtooth cross-correlation function in place of
the sinusoidal function produced by an analog system.
For small correlated amplitude, the digital cross-correla-
tion function is identical to the normalized analog cross-
correlation function, except for a loss of 2/ in amplitude.

General expressions for signal-to-noise ratios are derived
for the analog and digital cross-correlation functions.
When a very strong point source is recorded with a digital
system, the S/N ratio is infinite at time points of maximum
correlation, while, at points of weak correlation, the S/N
ratio is 2/= smaller than that for the analog case. In addi-
tion, the S/N ratio for an analog system is, at most, only
1/V 2 due to self-noise. For small correlated amplitude,
the S/N ratio for a digital system is uniformly 2 /= smaller
than the analog S/N ratio.
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Fig. 1. (a) Normalized analog and digital cross-correla-
tion functions for the case of small correlated amplitude,
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